V = 1771.86 (4) Å³

Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$

 $0.44 \times 0.33 \times 0.26 \text{ mm}$

55803 measured reflections

8384 independent reflections

5761 reflections with $I > 2\sigma(I)$

All H-atom parameters refined

Z = 4

T = 296 K

 $R_{\rm int} = 0.029$

332 parameters

 $\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,6-diaminopyridinium) tartrate monohydrate

Mohammad T. M. Al-Dajani,^a Hassan H. Abdallah,^b Nornisah Mohamed,^a* Jia Hao Goh^c‡ and Hoong-Kun Fun^c*§

^aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: nornisah@usm.my, hkfun@usm.my

Received 26 October 2009; accepted 27 October 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.137; data-to-parameter ratio = 25.3.

In the title compound, $2C_5H_8N_3^+ \cdot C_4H_4O_6^{2-} \cdot H_2O$, the two cations are essentially planar [maximum deviations = 0.023 (1) and 0.026 (1) Å]. In one of the cations, the protonated N atom and one of the amino group H atoms are hydrogen bonded to one of the carboxyl groups of the dianion through a pair of N-H···O hydrogen bonds, forming an $R_2^2(8)$ ring motif. In the crystal structure, the tartrate anions and water molecules are linked into chains along the *c* axis by intermolecular O-H···O and C-H···O hydrogen bonds. The cations further link the anions and water molecules into a three-dimensional extended structure by a network of N-H···O hydrogen bonds. The crystal structure is also stabilized by weak intermolecular π - π interactions [centroid–centroid distance = 3.6950 (6) Å].

Related literature

For related structures, see: Al-Dajani, Abdallah *et al.* (2009); Al-Dajani, Salhin *et al.* (2009). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For bond-length data, see: Allen *et al.* (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

[‡] Thomson Reuters ResearcherID: C-7576-2009.

Experimental

Crystal data

 $2C_{5}H_{8}N_{3}^{+} \cdot C_{4}H_{4}O_{6}^{2-} \cdot H_{2}O$ $M_{r} = 386.38$ Monoclinic, $P2_{1}/c$ a = 14.4722 (2) Å b = 15.7270 (2) Å c = 7.8419 (1) Å $\beta = 96.916$ (1)°

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.950, T_{max} = 0.970$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.137$ S = 1.048384 reflections

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1O1···O4 ⁱ	0.900 (16)	1.840 (16)	2.7315 (10)	170.9 (15)
O2−H1 <i>O</i> 2···O4 ⁱ	0.871 (17)	1.957 (17)	2.8260 (11)	175.6 (15)
$N1 - H1N1 \cdots O5$	0.933 (13)	1.740 (13)	2.6660 (11)	171.4 (13)
$N2-H1N2\cdots O2^{ii}$	0.882 (17)	2.369 (17)	3.2254 (13)	163.7 (14)
$N2-H1N2\cdots O6^{ii}$	0.882 (17)	2.461 (17)	3.0531 (13)	125.0 (13)
$N2 - H2N2 \cdot \cdot \cdot O6$	0.884 (14)	2.048 (14)	2.9306 (13)	176.7 (12)
N3−H1 <i>N</i> 3···O5	0.908 (16)	2.552 (16)	3.2431 (12)	133.4 (13)
$N3 - H1N3 \cdots O4^{iii}$	0.908 (16)	2.519 (17)	3.1842 (13)	130.5 (13)
$N3-H2N3\cdots O6^{iv}$	0.860 (16)	2.122 (16)	2.9499 (12)	161.3 (16)
$N4 - H1N4 \cdot \cdot \cdot O3^{v}$	0.924 (17)	1.810 (17)	2.7294 (12)	172.5 (15)
$N5-H1N5\cdotsO1W^{vi}$	0.827 (19)	2.114 (19)	2.9265 (15)	167.7 (15)
$N5-H2N5\cdotsO1^{v}$	0.888 (17)	2.243 (17)	3.0557 (14)	152.0 (14)
$N5 - H2N5 \cdots O3^{v}$	0.888 (17)	2.503 (16)	3.2154 (15)	137.8 (13)
$N6-H1N6\cdotsO1W^{vii}$	0.901 (17)	2.127 (17)	3.0131 (18)	167.5 (14)
N6−H2 <i>N</i> 6···O1	0.87 (2)	2.189 (19)	2.9851 (15)	152 (2)
$O1W - H1W1 \cdots O3^{iii}$	0.85(2)	2.37 (3)	2.9371 (13)	125 (2)
$O1W - H1W1 \cdots O4^{iii}$	0.85 (2)	2.42 (2)	3.1642 (13)	146 (2)
$O1W - H2W1 \cdots O5$	0.89 (2)	1.93 (2)	2.8153 (13)	175 (2)
$C2-H2A\cdots O3^{iii}$	0.963 (11)	2.490 (11)	3.3232 (12)	144.8 (9)
Symmetry codes: (i) r -	$-v \pm \frac{3}{2} = -\frac{1}{2}$ (ii)	$-r \pm 1 - v \pm 1$	$1 = 7 \pm 1$ (iii) r	$-v \perp \frac{3}{2} = z \perp \frac{1}{2}$

Symmetry codes: (i) $x, -y + \frac{2}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) x, y, z + 1; (v) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (vi) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (vii) -x, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

This research was supported by Universiti Sains Malaysia (USM) under grant No. 1001/PFARMASI/815025. HKF and JHG thank USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. JHG also thanks USM for the award of a USM fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5185).

[§] Thomson Reuters ResearcherID: A-3561-2009.

References

- Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2508–o2509.
- Al-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, 02931–02932.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, o2939-o2940 [doi:10.1107/S1600536809044663]

Bis(2,6-diaminopyridinium) tartrate monohydrate

M. T. M. Al-Dajani, H. H. Abdallah, N. Mohamed, J. H. Goh and H.-K. Fun

Comment

The asymmetric unit of the title compound, (I) (Fig. 1), comprises of two 2,6-diaminopyridinium cations, a tartrate dianion and a water molecule. Two intermolecular protons transfer from the carboxylic groups of tartaric acid to atoms N1 & N4 of the 2,6-diaminopyridine moiety has resulted in the formation of ions. The protonated N1 atom and the N2 atom of the amino group are hydrogen bonded to the carboxyl group (atoms O5 & O6) *via* a pair of N—H···O hydrogen bonds forming an $R^2_2(8)$ ring motif (Fig. 1, Bernstein *et al.*, 1995). The two 2,6-diaminopyridinium cations (N1–N3/C5–C9) and (N4–N6/C10–C14) are essentially planar, with maximum devations of 0.023 (1) and 0.026 (1) Å, respectively, for atoms C6 and C11. Comparing with the unprotonated structure (De cires-Mejias *et al.*, 2004), protonation of atoms N1 & N4 have widened the C—N—C angles to 123.51 (8) and 123.92 (9)°, respectively, for angles of C5—N1—C9 and C10—N4—C14. The bond lengths (Allen *et al.*, 1987) and angles observed are within normal ranges and are consistent with those related structures (Al-Dajani, Abdallah *et al.*, 2009; Al-Dajani, Salhin *et al.*, 2009).

The crystal structure of (I) is mainly stabilized by a network of N—H···O and C—H···O hydrogen bonds. Each N atom in the cations participates in intermolecular hydrogen bonds. In the crystal structure (Fig. 2), the tartrate anions and water molecules are linked into chains along the *c* axis by intermolecular O1—H1O1···O4, O2—H1O2···O4, O1W—H1W1···O3, O1W—H1W1···O4, O1W—H2W1···O5 and C2—H2A···O3 hydrogen bonds (Table 1). The 2,6-diaminopyridinium cations further linked the anions and water molecules into a three-dimensional extended structure by a network of N—H···O hydrogen bonds (Table 1). The crystal structure is further stabilized by weak intermolecular π - π interactions [*Cg*1···*Cg*1 = 3.6950 (6) Å; *Cg*1 is the centroid of the N1/C5–C9 pyridine ring].

Experimental

Tartaric acid (0.01 mol, 1.5 g) was dissolved in 50 ml of methanol in a round bottom flask. 2,6-Diaminopyridine (0.02 mol, 2.2 g) was added in small portions to the flask with stirring. The reaction mixture was left stirring for 3 h at room temperature. Brown blocks of (I) were separated, washed with methanol and dried at 353 K.

Refinement

All the hydrogen atoms were located from difference Fourier maps and allowed to refine freely [ranges: C—H = 0.922 (18) - 0.984 (15) Å; N—H = 0.827 (18) - 0.933 (14) Å]. The highest residual electron density peak is located at 0.77 Å from atom C2 and the deepest hole is located at 1.17 Å from atom C14.

Figures

Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for non-H atoms. Intermolecular hydrogen bonds are shown as dashed lines.

Fig. 2. The crystal structure of (I), viewed along the c axis, showing the three-dimensional network. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

 $F_{000} = 816$

 $\theta = 2.6 - 33.1^{\circ}$

 $\mu = 0.12 \text{ mm}^{-1}$ T = 296 K

Block, brown

 $0.44 \times 0.33 \times 0.26 \text{ mm}$

 $D_{\rm x} = 1.448 \ {\rm Mg \ m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9979 reflections

Bis(2,6-diaminopyridinium) tartrate monohydrate

Crystal data

```
2C_{5}H_{8}N_{3}^{+}\cdot C_{4}H_{4}O_{6}^{2-}\cdot H_{2}O

M_{r} = 386.38

Monoclinic, P2_{1}/c

Hall symbol: -P 2ybc

a = 14.4722 (2) Å

b = 15.7270 (2) Å

c = 7.8419 (1) Å

\beta = 96.916 (1)°

V = 1771.86 (4) Å<sup>3</sup>

Z = 4
```

Data collection

Bruker SMART APEXII CCD diffractometer	8384 independent reflections
Radiation source: fine-focus sealed tube	5761 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
<i>T</i> = 296 K	$\theta_{\text{max}} = 36.1^{\circ}$
φ and ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -23 \rightarrow 23$
$T_{\min} = 0.950, \ T_{\max} = 0.970$	$k = -25 \rightarrow 24$
55803 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	All H-atom parameters refined
$wR(F^2) = 0.137$	$w = 1/[\sigma^2(F_o^2) + (0.0645P)^2 + 0.1774P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
8384 reflections	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
332 parameters	$\Delta \rho_{min} = -0.23 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.14121 (5)	0.62179 (5)	0.37307 (9)	0.03748 (15)
02	0.33130 (5)	0.69021 (5)	0.36761 (10)	0.03834 (16)
03	0.09223 (6)	0.78743 (6)	0.35992 (11)	0.0505 (2)
O4	0.19983 (6)	0.82535 (5)	0.57216 (9)	0.04158 (17)
05	0.28815 (5)	0.55133 (5)	0.71274 (9)	0.04001 (16)
O6	0.36515 (6)	0.53101 (5)	0.48798 (9)	0.04409 (18)
C1	0.15720 (6)	0.77090 (6)	0.47338 (11)	0.03144 (17)
C2	0.18625 (6)	0.67770 (6)	0.49999 (10)	0.02824 (15)
C3	0.29147 (6)	0.66622 (6)	0.51725 (10)	0.02834 (15)
C4	0.31696 (6)	0.57521 (6)	0.57453 (10)	0.02985 (16)
N1	0.39658 (5)	0.44405 (5)	0.90954 (9)	0.02900 (14)
N2	0.47289 (7)	0.39813 (7)	0.68421 (11)	0.0423 (2)
N3	0.31436 (7)	0.50158 (7)	1.11702 (12)	0.0429 (2)
C5	0.46341 (6)	0.39419 (6)	0.85246 (11)	0.03136 (17)
C6	0.51647 (7)	0.34231 (7)	0.97048 (14)	0.0404 (2)
C7	0.49815 (8)	0.34277 (7)	1.13904 (14)	0.0427 (2)
C8	0.43089 (8)	0.39418 (7)	1.19503 (12)	0.0395 (2)
C9	0.38033 (6)	0.44752 (6)	1.07627 (10)	0.03057 (16)
N4	0.07411 (6)	0.29439 (6)	0.34459 (12)	0.03809 (18)
N5	0.05279 (8)	0.15005 (7)	0.31936 (18)	0.0562 (3)
N6	0.07972 (10)	0.44052 (8)	0.3524 (2)	0.0649 (3)
C10	0.10707 (7)	0.21441 (7)	0.37940 (14)	0.0394 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C11	0.19414 (8)	0.20559 (8)	0.47490 (18)	0.0504 (3)
C12	0.24392 (8)	0.27782 (10)	0.52373 (19)	0.0564 (3)
C13	0.20988 (9)	0.35831 (9)	0.48473 (18)	0.0534 (3)
C14	0.12190 (8)	0.36637 (7)	0.39441 (15)	0.0426 (2)
O1W	0.11303 (7)	0.52769 (6)	0.82780 (15)	0.0559 (2)
H1O1	0.1548 (11)	0.6424 (10)	0.272 (2)	0.057 (4)*
H1O2	0.2904 (13)	0.6826 (10)	0.278 (2)	0.067 (5)*
H1N1	0.3619 (9)	0.4801 (8)	0.8319 (18)	0.044 (3)*
H1N2	0.5253 (12)	0.3800 (10)	0.650(2)	0.062 (4)*
H2N2	0.4425 (9)	0.4390 (9)	0.6238 (18)	0.045 (3)*
H1N3	0.2911 (11)	0.5406 (11)	1.038 (2)	0.065 (5)*
H2N3	0.3161 (12)	0.5144 (10)	1.224 (2)	0.067 (5)*
H1N4	0.0176 (12)	0.2971 (10)	0.276 (2)	0.059 (4)*
H1N5	0.0716 (12)	0.1009 (12)	0.338 (2)	0.068 (5)*
H2N5	-0.0001 (12)	0.1605 (10)	0.253 (2)	0.059 (4)*
H1N6	0.0204 (12)	0.4416 (10)	0.302 (2)	0.060 (4)*
H2N6	0.1102 (14)	0.4860 (12)	0.389 (3)	0.079 (5)*
H2A	0.1657 (8)	0.6614 (7)	0.6076 (14)	0.030 (3)*
H3A	0.3165 (9)	0.7015 (7)	0.6120 (16)	0.034 (3)*
H6A	0.5634 (12)	0.3070 (10)	0.937 (2)	0.063 (4)*
H7A	0.5370 (10)	0.3053 (9)	1.2187 (18)	0.050 (4)*
H8A	0.4196 (10)	0.3943 (9)	1.3120 (19)	0.051 (4)*
H11A	0.2168 (12)	0.1515 (11)	0.498 (2)	0.067 (5)*
H12A	0.3045 (13)	0.2700 (11)	0.588 (2)	0.075 (5)*
H13A	0.2436 (12)	0.4097 (11)	0.514 (2)	0.069 (5)*
H1W1	0.1128 (16)	0.5645 (16)	0.907 (3)	0.102 (7)*
H2W1	0.1669 (15)	0.5349 (13)	0.785 (3)	0.087 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0370 (3)	0.0357 (4)	0.0381 (3)	-0.0092 (3)	-0.0024 (3)	-0.0016 (3)
O2	0.0333 (3)	0.0438 (4)	0.0384 (3)	-0.0046 (3)	0.0061 (3)	0.0108 (3)
O3	0.0395 (4)	0.0544 (5)	0.0547 (5)	0.0125 (3)	-0.0065 (3)	0.0098 (4)
O4	0.0576 (4)	0.0305 (3)	0.0367 (3)	0.0000 (3)	0.0057 (3)	-0.0021 (3)
O5	0.0451 (4)	0.0428 (4)	0.0335 (3)	0.0128 (3)	0.0100 (3)	0.0117 (3)
O6	0.0569 (4)	0.0413 (4)	0.0360 (3)	0.0153 (3)	0.0133 (3)	0.0013 (3)
C1	0.0326 (4)	0.0333 (4)	0.0292 (3)	0.0048 (3)	0.0066 (3)	0.0038 (3)
C2	0.0298 (4)	0.0285 (4)	0.0261 (3)	-0.0009 (3)	0.0020 (3)	0.0011 (3)
C3	0.0292 (4)	0.0281 (4)	0.0269 (3)	-0.0014 (3)	-0.0002 (3)	0.0004 (3)
C4	0.0315 (4)	0.0315 (4)	0.0257 (3)	0.0023 (3)	-0.0001 (3)	0.0008 (3)
N1	0.0305 (3)	0.0292 (4)	0.0266 (3)	0.0036 (3)	0.0006 (2)	0.0020 (2)
N2	0.0456 (5)	0.0480 (5)	0.0346 (4)	0.0104 (4)	0.0100 (3)	0.0000 (4)
N3	0.0471 (5)	0.0488 (5)	0.0331 (4)	0.0141 (4)	0.0064 (3)	-0.0019 (4)
C5	0.0311 (4)	0.0300 (4)	0.0325 (4)	0.0013 (3)	0.0018 (3)	-0.0028 (3)
C6	0.0396 (5)	0.0367 (5)	0.0431 (5)	0.0124 (4)	-0.0028 (4)	-0.0020 (4)
C7	0.0485 (5)	0.0359 (5)	0.0398 (5)	0.0078 (4)	-0.0106 (4)	0.0039 (4)
C8	0.0483 (5)	0.0411 (5)	0.0274 (4)	0.0037 (4)	-0.0022 (3)	0.0033 (3)

С9	0.0322 (4)	0.0317 (4)	0.0270 (3)	-0.0004 (3)	0.0004 (3)	-0.0007 (3)		
N4	0.0290 (4)	0.0349 (4)	0.0485 (4)	0.0013 (3)	-0.0029 (3)	-0.0015 (3)		
N5	0.0403 (5)	0.0351 (5)	0.0901 (9)	0.0016 (4)	-0.0046 (5)	-0.0084(5)		
N6	0.0575 (7)	0.0332 (5)	0.0982 (10)	-0.0015 (5)	-0.0145 (6)	0.0028 (5)		
C10	0.0319 (4)	0.0352 (5)	0.0508 (5)	0.0024 (4)	0.0031 (4)	-0.0024 (4)		
C11	0.0376 (5)	0.0459 (7)	0.0651 (7)	0.0093 (5)	-0.0048 (5)	0.0021 (5)		
C12	0.0339 (5)	0.0639 (8)	0.0670 (8)	0.0027 (5)	-0.0123 (5)	-0.0004 (6)		
C13	0.0413 (6)	0.0490 (7)	0.0661 (8)	-0.0081 (5)	-0.0095 (5)	-0.0043 (5)		
C14	0.0388 (5)	0.0365 (5)	0.0512 (6)	-0.0026 (4)	-0.0003 (4)	-0.0007 (4)		
O1W	0.0539 (5)	0.0414 (5)	0.0734 (6)	-0.0122 (4)	0.0114 (4)	-0.0059 (4)		
Geometric pa	urameters (Å, °)							
O1—C2		1.4257 (11)	С6—	H6A	0.9	38 (17)		
01—H101		0.901 (16)	С7—	C8	1.3	773 (16)		
O2—C3		1.4194 (10)	С7—	H7A	0.9	34 (15)		
O2—H1O2		0.868 (19)	C8—	С9	1.3	937 (13)		
O3—C1		1.2418 (12)	C8—	H8A	0.9	51 (14)		
O4—C1		1.2644 (12)	N4—	C14	1.3	591 (14)		
O5—C4		1.2643 (10)	N4—	C10	1.3	513 (13)		
O6—C4		1.2426 (11)	N4—	H1N4	0.92	23 (17)		
C1—C2		1.5322 (13)	N5—	C10	1.3	319 (15)		
С2—С3		1.5231 (12)	N5—H1N5		231 (12) N5—H1N5		0.82	27 (18)
C2—H2A		0.962 (11)	N5—	H2N5	0.888 (17)			
C3—C4		1.5318 (12)	N6-C14		1.3	390 (16)		
С3—НЗА		0.962 (12) N		N6—H1N6		N6—H1N6		01 (18)
N1—C9		1.3572 (11)	N6—	H2N6	0.8	7 (2)		
N1—C5		1.3620 (11)	C10–	-C11	1.3	930 (16)		
N1—H1N1		0.933 (14)	C11–	-C12	1.3	747 (19)		
N2—C5		1.3443 (12)	C11–	-H11A	0.92	22 (18)		
N2—H1N2		0.881 (17)	C12–	C13	1.3	79 (2)		
N2—H2N2		0.884 (14)	C12–	-H12A	0.9	63 (19)		
N3—C9		1.3453 (13)	C13–	C14	1.3	862 (16)		
N3—H1N3		0.907 (17)	C13–	-H13A	0.93	59 (17)		
N3—H2N3		0.859 (18)	O1W	—H1W1	0.8	5 (3)		
C5—C6		1.3931 (13)	O1W	—H2W1	0.8	9(2)		
C6—C7		1.3790 (15)						
С2—О1—Н10	01	105.3 (10)	C8—	С7—С6	122	.24 (9)		
С3—О2—Н10	02	108.9 (11)	C8—	С7—Н7А	121	.3 (8)		
O3—C1—O4			С6—	С7—Н7А	116	.4 (8)		
O3—C1—C2	C1—C2 118.00 (9)		С7—	С8—С9	118	.34 (9)		
O4—C1—C2		117.31 (8)	С7—	C8—H8A	121	.2 (9)		
O1—C2—C3		110.92 (7)	С9—	C8—H8A	120	.4 (9)		
01—C2—C1		113.58 (7)	N3—	C9—N1	117	.68 (8)		
C3—C2—C1		112.37 (7)	N3—	С9—С8	123	.52 (9)		
O1—C2—H2	A	106.5 (7)	N1—	С9—С8	118	.79 (8)		
С3—С2—Н2А	4	107.6 (7)	C14-	-N4-C10	123	.92 (9)		
C1—C2—H2A	4	105.4 (7)	C14-	-N4-H1N4	120	.8 (10)		
O2—C3—C2		113.34 (7)	C10–	-N4-H1N4	115	.1 (10)		

O2—C3—C4	112.54 (7)	C10—N5—H1N5	118.6 (12)
C2—C3—C4	109.86 (7)	C10—N5—H2N5	119.8 (11)
O2—C3—H3A	109.4 (7)	H1N5—N5—H2N5	121.5 (16)
С2—С3—НЗА	106.2 (7)	C14—N6—H1N6	120.4 (11)
С4—С3—НЗА	104.9 (7)	C14—N6—H2N6	115.8 (13)
O6—C4—O5	124.53 (9)	H1N6—N6—H2N6	123.2 (17)
O6—C4—C3	119.58 (8)	N5-C10-N4	116.98 (10)
O5—C4—C3	115.86 (8)	N5-C10-C11	124.84 (11)
C9—N1—C5	123.51 (8)	N4-C10-C11	118.18 (10)
C9—N1—H1N1	117.5 (8)	C12—C11—C10	118.51 (11)
C5—N1—H1N1	118.9 (8)	C12—C11—H11A	123.0 (11)
C5—N2—H1N2	118.3 (11)	C10-C11-H11A	118.4 (11)
C5—N2—H2N2	117.2 (9)	C11—C12—C13	122.37 (11)
H1N2—N2—H2N2	117.8 (13)	C11—C12—H12A	116.9 (11)
C9—N3—H1N3	118.8 (10)	C13—C12—H12A	120.7 (11)
C9—N3—H2N3	116.2 (11)	C12—C13—C14	118.61 (11)
H1N3—N3—H2N3	118.1 (15)	C12—C13—H13A	124.2 (10)
N2	117.16 (8)	C14—C13—H13A	117.1 (10)
N2—C5—C6	124.46 (9)	N6-C14-N4	116.97 (10)
N1—C5—C6	118.38 (8)	N6-C14-C13	124.67 (11)
C7—C6—C5	118.65 (9)	N4-C14-C13	118.36 (11)
С7—С6—Н6А	119.9 (10)	H1W1—O1W—H2W1	106 (2)
С5—С6—Н6А	121.5 (10)		
O3—C1—C2—O1	7.58 (11)	C5—C6—C7—C8	-1.59 (17)
O4—C1—C2—O1	-174.21 (7)	C6—C7—C8—C9	-0.26 (17)
O3—C1—C2—C3	134.52 (9)	C5—N1—C9—N3	177.76 (9)
O4—C1—C2—C3	-47.27 (10)	C5—N1—C9—C8	-3.54 (14)
O1—C2—C3—O2	65.36 (10)	C7—C8—C9—N3	-178.63 (10)
C1—C2—C3—O2	-62.99 (9)	C7—C8—C9—N1	2.75 (15)
O1—C2—C3—C4	-61.50 (9)	C14—N4—C10—N5	-178.83 (11)
C1—C2—C3—C4	170.15 (7)	C14—N4—C10—C11	1.42 (17)
O2—C3—C4—O6	-2.16 (12)	N5-C10-C11-C12	177.88 (13)
C2—C3—C4—O6	125.14 (9)	N4-C10-C11-C12	-2.39 (19)
O2—C3—C4—O5	176.12 (8)	C10-C11-C12-C13	1.4 (2)
C2—C3—C4—O5	-56.57 (10)	C11—C12—C13—C14	0.6 (2)
C9—N1—C5—N2	-178.91 (9)	C10—N4—C14—N6	-179.17 (12)
C9—N1—C5—C6	1.66 (14)	C10—N4—C14—C13	0.63 (17)
N2-C5-C6-C7	-178.45 (10)	C12—C13—C14—N6	178.15 (14)
N1-C5-C6-C7	0.93 (15)	C12—C13—C14—N4	-1.64 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
01—H101···04 ⁱ	0.900 (16)	1.840 (16)	2.7315 (10)	170.9 (15)
O2—H1O2···O4 ⁱ	0.871 (17)	1.957 (17)	2.8260 (11)	175.6 (15)
N1—H1N1···O5	0.933 (13)	1.740 (13)	2.6660 (11)	171.4 (13)
N2—H1N2···O2 ⁱⁱ	0.882 (17)	2.369 (17)	3.2254 (13)	163.7 (14)
N2—H1N2···O6 ⁱⁱ	0.882 (17)	2.461 (17)	3.0531 (13)	125.0 (13)

N2—H2N2…O6	0.884 (14)	2.048 (14)	2.9306 (13)	176.7 (12)
N3—H1N3…O5	0.908 (16)	2.552 (16)	3.2431 (12)	133.4 (13)
N3—H1N3····O4 ⁱⁱⁱ	0.908 (16)	2.519 (17)	3.1842 (13)	130.5 (13)
N3—H2N3···O6 ^{iv}	0.860 (16)	2.122 (16)	2.9499 (12)	161.3 (16)
N4—H1N4···O3 ^v	0.924 (17)	1.810 (17)	2.7294 (12)	172.5 (15)
N5—H1N5···O1W ^{vi}	0.827 (19)	2.114 (19)	2.9265 (15)	167.7 (15)
N5—H2N5···O1 ^v	0.888 (17)	2.243 (17)	3.0557 (14)	152.0 (14)
N5—H2N5···O3 ^v	0.888 (17)	2.503 (16)	3.2154 (15)	137.8 (13)
N6—H1N6···O1W ^{vii}	0.901 (17)	2.127 (17)	3.0131 (18)	167.5 (14)
N6—H2N6…O1	0.87 (2)	2.189 (19)	2.9851 (15)	152 (2)
O1W—H1W1···O3 ⁱⁱⁱ	0.85 (2)	2.37 (3)	2.9371 (13)	125 (2)
O1W—H1W1···O4 ⁱⁱⁱ	0.85 (2)	2.42 (2)	3.1642 (13)	146 (2)
O1W—H2W1···O5	0.89 (2)	1.93 (2)	2.8153 (13)	175 (2)
C2—H2A···O3 ⁱⁱⁱ	0.963 (11)	2.490 (11)	3.3232 (12)	144.8 (9)
	. ,	. /	. ,	

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, -*y*+3/2, *z*+1/2; (iv) *x*, *y*, *z*+1; (v) -*x*, *y*-1/2, -*z*+1/2; (vi) *x*, -*y*+1/2, *z*-1/2; (vii) -*x*, -*y*+1, -*z*+1.

Fig. 2